Raster graphics
In computer graphics, a raster graphics image or bitmap is a data structure representing a generally rectangular grid of pixels, or points of color, viewable via a monitor, paper, or other display medium. Raster images are stored in image files with varying formats (see Comparison of graphics file formats).
A bitmap corresponds bit-for-bit with an image displayed on a screen, generally in the same format used for storage in the display's video memory, or maybe as a device-independent bitmap. A bitmap is technically characterized by the width and height of the image in pixels and by the number of bits per pixel (a color depth, which determines the number of colors it can represent).
Raster graphics are resolution dependent. They cannot scale up to an arbitrary resolution without loss of apparent quality. This deficiency contrasts with the capabilities of vector graphics, which easily scale up to the quality of the device rendering them. Raster graphics deal more practically than vector graphics with photographs and photo-realistic images, while vector graphics often serve better for typesetting or for graphic design. Modern computer-monitors typically display about 72 to 130 pixels per inch (PPI), and some modern consumer printers can resolve 2400 dots per inch (DPI) or more; determining the most appropriate image resolution for a given printer-resolution can pose difficulties, since printed output may have a greater level of detail than a viewer can discern on a monitor. Typically, a resolution of 150 to 300 pixel per inch works well for 4-color process (CMYK) printing.
Vector graphics
Vector graphics is the use of geometrical primitives such as points, lines, curves, and shapes or polygon(s), which are all based on mathematical equations, to represent images in computer graphics.
Vector graphics formats are complementary to raster graphics, which is the representation of images as an array of pixels, as it is typically used for the representation of photographic images.[1] There are instances when working with vector tools and formats is best practice, and instances when working with raster tools and formats is best practice. There are times when both formats come together. An understanding of the advantages and limitations of each technology and the relationship between them is most likely to result in efficient and effective use of tools.
Computer displays are made up from grids of small rectangular cells called pixels. The picture is built up from these cells. The smaller and closer the cells are together, the better the quality of the image, but the bigger the file needed to store the data. If the number of pixels is kept constant, the size of each pixel will grow and the image becomes grainy (pixellated) when magnified, as the resolution of the eye enables it to pick out individual pixels.
Vector graphics files store the lines, shapes and colours that make up an image as mathematical formulae. A vector graphics program uses these mathematical formulae to construct the screen image, building the best quality image possible, given the screen resolution. The mathematical formulae determine where the dots that make up the image should be placed for the best results when displaying the image. Since these formulae can produce an image scalable to any size and detail, the quality of the image is only determined by the resolution of the display, and the file size of vector data generating the image stays the same. Printing the image to paper will usually give a sharper, higher resolution output than printing it to the screen but can use exactly the same vector data file.
Source:- http://en.wikipedia.org/
Comments
Post a Comment